Page 92 - Revista Auditoria Pública nº 83
P. 92
REVISTA AUDITORÍA PÚBLICA / 83
tect Bid Rigging”. Working Papers SES. Faculty of gement, enero 2024.
Economics and Social Sciences. University of Fri- https://doi.org/10.1108/IJPSM-07-2022-0157.
bourg, vol. 484, 2017.
http://doc.rero.ch/record/289133/files/WP_SES_484. ¡ Riera, T. (2023): “Machine Learning Applications for
pdf. SAIs”. International Journal of Government Auditing,
Q2 2023 - Science and Technology in Audit. Vol. SO,
¡ Imhof, D. (2018): “Empirical Methods for Detecting No. 2, pp. 13-17.
Bid-rigging Cartels”. Université Bourgogne Fran-
che-Comté, 2018. ¡ Starke, C., Kieslich, K., Reichert, Max y Kobis, N.
(2023): “Algorithms against Corruption: A Conjoint
¡ Kawai, K. y Nakabayashi, J. (2024): “A Field Experi- Study on Designing Automated Twitter Posts to En-
ment on Antitrust Compliance”. NBER Working paper courage Collective Action”.
32347. https://doi.org/10.31235/osf.io/wf45t
https://www.nber.org/papers/w32347
¡ Torres Berro, Y., Batista, V. y Torres-Carrión, P. (2020):
¡ Kobis, N., Starke, C. y Rahwan, I. (2022): “The pro- “Artificial Intelligence Techniques to Detect and Pre-
mise and perils of using artificial intelligence to fight vent Corruption in Procurement: A Systematic Lite-
corruption”. Nature Machine Intelligence. 4. rature Review”. Communications in Computer and
https://doi.org/10.1038/s42256-022-00489-1 Information Science. 1194, pp. 254-268.
¡ Kultima, J. R. (2022): “Collusion Detection in Public ¡ Tóth, B., Fazekas, M. y János, T.I. (2015): “Toolkit for
Procurement Using Computational Methods”. Danish detecting collusive bidding in public procurement
Competition and Consumer Authority. with examples from Hungary” .
https://www.kfst.dk/media/dq2htrud/bid-viewer_56_ https://www.researchgate.net/publica -
seneste.pdf. tion/274457716.
¡ Lyra, M. S., Damásio, B., Pinheiro, F. L. y Bacao, F. ¡ Wallimann, H., Imhof, D. y Huber, M. (2020): “A Ma-
(2022): “Fraud, corruption, and collusion in public pro- chine Learning Approach for Flagging Incomplete
curement activities, a systematic literature review on Bid-rigging Cartels”. University of Freiburg/Fribourg
data-driven methods”. Applied Network Science, vol. (Switzerland), Abril 2020.
7, no. 1, p. 83, Dec. 2022, http://arxiv.org/abs/2004.05629.
https://doi.org/10.1007/s41109-022-00523-6.
¡ Nai, R., Sulis, E. y Meo, R. (2022): “Public Procure-
ment Fraud Detection and Artificial Intelligence Tech-
niques: a Literature Review”. EKAW’22: Companion
Proceedings of the 23rd International Conference on
Knowledge Engineering and Knowledge Manage-
ment.
https://ceur-ws.org/Vol-3256/km4law4.pdf.
¡ Nurkey, A., Mukasheva, A. y Yedilkhan, D. (2021):
“Models and methods of digital mechanisms in an-
ti-corruption, their advantages and disadvantages,
and applications”. CIEES 2021, IOP Conf. Series: Ma-
terials Science and Engineering.
https://doi:10.1088/1757-899X/1216/1/012015
¡ Odilla, F. (2023): “Bots against corruption: Exploring
the benefits and limitations of AI-based anti-corrup-
tion technology”. Crime Law and Social Change, 80.
https://doi.org/10.1007/s10611-023-10091-0
¡ Rejeb, A., Rejeb, K., Appolloni, A. y Seuring, S.
(2024): “Public procurement research: a bibliometric
analysis”. International Journal of Public Sector Mana-
92