Page 91 - Revista Auditoria Pública nº 83
P. 91

El uso de la IA generativa en la contratación pública para detectar prácticas irregulares






            Bibliografía                                        ¡  Gamero Casado, E. y Pérez Guerrero, F. (2023): “In-
                                                                   teligencia Artificial y Sector Público. Retos, límites y
            ¡   Aarvik, P. (2019): “Artificial Intelligence – a promising   medios”. Valencia: Tirant lo Blanch, 2023.
               anti-corruption tool in development settings? Chr. Mi-
               chelsen Institute, U4 Report, 2019:1.            ¡  García Rodríguez, M. J., Rodríguez Montequín, V., Or-
               https://www.u4.no/publications/artificial-intelli-  tega Fernández, F. y Villanueva Balsera, J. M. (2019):
               gence-a-promising-anti-corruption-tool-in-develop-  “Public Procurement Announcements in Spain: Regu-
               ment-settings                                       lations, Data Analysis, and Award Price Estimator Using
                                                                   Machine Learning”. Complexity, vol. 2019, no. v, 2019.
            ¡  Adam, I. y Fazekas, M. (2021): “Are emerging tech-     https://doi.org/10.1155/2019/2360610.
               nologies helping win the fight against corruption?
               A review of the state of evidence”. Information Eco-  ¡  García Rodríguez, M. J., Rodríguez Montequín, V., Or-
               nomics and Policy, Volume 57, 2021, 100950, ISSN    tega Fernández, F. y Villanueva Balsera, J. M. (2020):
               0167-6245.                                          “Bidders Recommender for Public Procurement
               https://doi.org/10.1016/j.infoecopol.2021.100950.   Auctions Using Machine Learning: Data Analysis, Al-
                                                                   gorithm, and Case Study with Tenders from Spain”.
            ¡  Amthauer, J., Fleiß, J., Guggi, F. y Robertson,  V.   Complexity, vol. 2020, pp. 1–20, Nov. 2020.
               (2023): “Ready or not? A systematic review of case      https://doi.org/10.1155/2020/8858258.
               studies using data-driven approaches to detect re-
               al-world antitrust violations,” Computer Law & Secu-  ¡  García Rodríguez, M. J., Rodríguez-Montequín,
               rity Review, vol. 49, p. 105807.                    V., Ballesteros-Pérez, P., Love, P. E. D. y Signor, R.
               https://doi.org/10.1016/j.clsr.2023.105807          (2022): “Collusion detection in public procurement
                                                                   auctions with machine learning algorithms”. Automa-
            ¡  Center for Audit Quality (2024): “Auditing in the Age   tion in Construction, vol. 133, p. 104047, enero 2022.
               of generative AI” .                                 https://doi.org/10.1016/j.autcon.2021.104047.
               https://www.thecaq.org/auditing-in-the-age-of-gene-
               rative-ai                                        ¡  Gerli, C. (2024): “How public organizations can use
                                                                   AI in anti-corruption: What we know so far and why
            ¡  Ceva, E. y Jiménez, M.C. (2022): “Automating Antico-  we need to learn more about it”. Hertie School, Cen-
               rruption?”. Ethics and Information Technology (2022)   ter for Digital Governance.
               24:48                                               https://www.hertie-school.org/en/digital-governance/
               https://doi.org/10.1007/s10676-022-09670-x          research/blog/detail/content/how-public-organisa-
                                                                   tions-can-use-ai-in-anti-corruption-what-we-know-so-
            ¡  Ebers, M., Poncibó, C. y Zou, M. (2023): “Contracting   far-and-why-we-need-to-learn-more-about-it
               and Contract Law in the Age of Artificial Intelligence”.
               Bloomsbury Publishing, 2023.                     ¡  Huber, M. e Imhof, D. (2019): “Machine learning with
                                                                   screens  for  detecting  bid-rigging  cartels”.  Interna-
            ¡  European Parliament (2021):  “Public procurement    tional Journal of Industrial Organization, vol. 65, pp.
               contracts”. European Parliament, Fact Sheets on the   277–301, Jul. 2019.
               European Union.                                     https://doi.org/10.1016/j.ijindorg.2019.04.002.
               https://www.europarl.europa.eu/factsheets/en/
               sheet/34/public-procurement-contracts.           ¡  Huber, M., Imhof, D. e Ishii, R. (2020): “Transnatio-
                                                                   nal machine learning with screens for flagging bid-ri-
            ¡  European Parliament (2024): “The Future of Digitali-  gging cartels”. University of Fribourg (Switzerland),
               sation in Budgetary Control”. Policy Department for   Faculty of Economics and Social Sciences, 2020.
               Budgetary  Affairs, Directorate-General for Internal      https://doc.rero.ch/record/329575/files/WP_
               Policies. PE 759.623 – February 2024.               SES_519.pdf.
               https://www.europarl.europa.eu/thinktank/en/docu-
               ment/IPOL_STU(2024)759623                        ¡  Huber, M. e Imhof, D. (2023): “Flagging cartel par-
                                                                   ticipants with deep learning based on convolutional
            ¡  Gallego, J., Rivero, G. y Martínez, J.D. (2018): “Pre-  neural networks”. International Journal of Industrial
               venting rather than Punishing: An Early Warning Mo-  Organization, p. 102946, Abril 2023.
               del of Malfeasance in Public Procurement,” Docu-     https://doi.org/10.1016/j.ijindorg.2023.102946.
               mentos de Trabajo 16724, Universidad del Rosario.
               https://ideas.repec.org/p/col/000092/016724.html  ¡  Imhof, D. (2017): “Simple Statistical Screens to De-




                                                                                                              91
   86   87   88   89   90   91   92   93   94   95   96